オプション取引

フィボナッチ数列 (読み)ふぃぼなっちすうれつ

フィボナッチ数列 (読み)ふぃぼなっちすうれつ
【書籍刊行のお知らせ】
結城浩です。いつもご愛読ありがとうございます。
書籍化第一弾として『数学ガールの秘密ノート/式とグラフ』が 2013年7月に刊行されます。ぜひ応援してくださいね!

なお、書籍化第二弾は2013年12月刊行の予定です。

フィボナッチ数列の一般項を計算する(※ただし有理数に限る)

さて、この FibNum こと Rational の二要素からなるタプルは、左に \( \sqrt \) が付かない項を、右に \( \sqrt \) が付く項を格納することしよう。つまり (フィボナッチ数列 (読み)ふぃぼなっちすうれつ 1, 1) と書けば \( 1 + \sqrt フィボナッチ数列 (読み)ふぃぼなっちすうれつ \) のこと。 (0, 1) と書けば \( \sqrt \) のこと。 (1 % 2, 1 % 3) と書けば \( \frac + \frac \sqrt \) のことを表す。

式を書き下す

OK。さすがにちょっと見づらいがまあ仕方ない。でも fibDiv として素直に除算を除算のまま書き下してしまった。除算は \( 0 \) で割れないとか面倒なこともあるので、乗算の形にしておきたい。

まず、 (1, 1) `fibDiv` (2, 0) は要するに \( フィボナッチ数列 (読み)ふぃぼなっちすうれつ \frac> \) のことだが、こんなものは \( \frac + \frac\sqrt \)、つまり (1 % 2, 1 % 2) としてしまえば良い。

後ろ側の \( \sqrt フィボナッチ数列 (読み)ふぃぼなっちすうれつ \) で割る処理は、逆数であるところの \( \frac<\sqrt> \) 、つまり \( \frac<\sqrt> \) を掛ければ良い。\( \frac<\sqrt> \) ってことは \( 0 + \frac\sqrt \) だから、ここでの表現では (0, 1 % 5) ってことだ。

演算子を実装する : 累乗

\( n フィボナッチ数列 (読み)ふぃぼなっちすうれつ \) が大きいとそのまま \(n – 1\) 回の乗算をすることになってちょっとばかり遅い。二乗の結果が使えるところはどんどんそれを使って計算させることにしよう。乗算の回数が最大でも \( 2 \log \) 回で済む。

演算子を実装する : 乗算

FibNum の乗算とは何かと言うと、\( (a + b\sqrt)(c + d\sqrt) \) ってことで、つまり、

\begin & & (a + b\sqrt)(c + d\sqrt) \\ &=& ac + ad\sqrt + フィボナッチ数列 (読み)ふぃぼなっちすうれつ フィボナッチ数列 (読み)ふぃぼなっちすうれつ bc\sqrt + 5bd \\ &=& (ac + 5bd) + (ad + bc)\sqrt \end

フィボナッチ数列・リュカ数列・・・黄金比

もっともそれぞれの級に明確な境界を決めることには、英語学習という観点からは意味がないことなので、その辺は曖昧さがあって構わなくどんな方法でも良いのですが、最高水準特進問題集、シリウス発展編Vol3、もしくは、Progress in English R Book3のレベルまではマスターしているでしょうか、ということでしょう。そして、その部分こそが、61.8%を占める部分なのです。残りの38.2%は、2級の過去問を使って、語彙力強化や演習で埋めていくのです。そして、その努力は、さらに上の級の学習の足がかりとなることでしょう。

0から1を生み出す方法

上のグラフを注意深く見てみると、英検5級にはオレンジ色の基礎の部分がありませんね。それもそのはず、英検は5級からスタートするからなのです。学習のやりかたを理解しや学習リズムが整いさえすれば、家庭学習で少しずつ級を上げることが可能でしょうが、最初はうまくいかないかもしれません。ドミノ倒しのように、最初だけは外部の力(学校の授業など)が必要かもしれない、とこのグラフは語っている気がしました。小学校から本格的に英語の授業が始まるらしいのですが、小年生の子を持つ親としては、まずは子供の英語への関心度を見る目的で、宿題等のサポートをしながら、折をみて、英検5級の過去問をさせてみると良いのかもしれません。学習者との相性もあるのでなんとも言えませんが、その後は、Progress in Englishを使い、基礎学力の向上(グラフのオレンジ色の部分)に努めるとともに、語彙力向上や演習を目的に、英検の過去問(薄いオレンジ色の部分)を投入していくと良いでしょう。

最後に人生訓!?

余談2
「前の2つの項を足すと現在の項になる」とは、私たちの日々の行動や人生選択についても当てはまりそうです。

初項(溜まったマイナス: -1000)に対して、第2項(リカバリー)では「黄金数の逆数 x 1000」に近い値を設定してみました。第3項以降は「前の2つの項の和」としています。面白いことがわかりましたね。マイナスとプラスが交互になっていたものが、①の場合には第9項以降で、②の場合には第11項以降で、プラスに転換されています。

第36回 いとしのフィボナッチ(後編)

【書籍刊行のお知らせ】
結城浩です。いつもご愛読ありがとうございます。
書籍化第一弾として『数学ガールの秘密ノート/式とグラフ』が 2013年7月に刊行されます。ぜひ応援してくださいね!

なお、書籍化第二弾は2013年12月刊行の予定です。

一つずらした自分になる

「だから、フィボナッチ数列というのはこういう数列になる。この数列を研究してみよう」

ユーリ 「うん」

「数列の研究ではまず — —」

ユーリ 「《階差数列を求める》んでしょ! ユーリ、やってみる!」

フィボナッチ数列の階差数列を求める

ユーリ 「へえっ! おもしろい! フィボナッチ数列は — —階差数列を求めると、一つずらした自分になるんだね!」

フィボナッチ数列の階差数列は、一つずらした自分になる

「確かにおもしろいな、その発見」

ユーリ 「だよね! ……あれ? でもこれはあたりまえかにゃ?」

フィボナッチ数列 (読み)ふぃぼなっちすうれつ 「あたりまえというと?」

ユーリ 「だってさ、フィボナッチ数列って、二つ足したら次になるんでしょ? だったら、差をとったら一つずらした自分になるのはあたりまえじゃん」

フィボナッチ数列 (読み)ふぃぼなっちすうれつ 「まあ、あたりまえといえばあたりまえなんだけどね。簡単な式変形でわかるよ」

ユーリ 「これでなんで《わかるよ》って言えんの?」

「だって、ほら、左辺の $F_ - F_$ という式は添字の部分をよく見ると、隣り合っている二つの項の差を取っていることがわかるよね。つまり階差を求めているわけだ」

ユーリ 「ほー」

「そして右辺の $F_n$ という式はフィボナッチ数列の一般項、つまり第 $n$ 項だよね。だから、この式 $F_ - F_ = F_n$ は《階差を取ると自分になる》ということを表現している」

ユーリ 「してないよ」

「え?」

ユーリ 「《階差を取ると自分になる》じゃなくて、《階差を取ると一つずらした自分になる》でしょ? だって、ほんとの階差なら $F_ - F_$ じゃなくて、 $F_ - F_n$ のはずだもん」

「あ、そ、そうだね。その通りだ」

ユーリ 「階差が自分になったら、 $2$ のべきじょうになっちゃうし」

「ユーリはよくそういうのを見つけるよね」

ユーリ はめんどうくさがりだけれど、妙なところできっちりミスを指摘するんだよな……)

ユーリ 「ねーお兄ちゃん。そんなことより、気になることあんだけど」

「なに?」

ユーリ 「ユーリがね、一つずらした自分になるって言ったときにね、お兄ちゃん、すぐに数式を出してきたじゃん?」

「ん? まあ、そうだね」

ユーリ 「あれはなんで?」

「なんでと言われても困るけど……」

ユーリ 「あのね、なんでお兄ちゃんはすぐに数式を出したの? 出そうと思ったの?」

「それは……きちんと答えるのは難しいな。まず、数列について何か確かなことを言おうとしたら、 たいていの場合は、数式を使うしかないからだよ。 《フィボナッチ数列の階差数列は一つずらした自分》を確かめるために、 フィボナッチ数列の定義の式を持ち出してきたんだ」

ユーリ 「……」

「ねえユーリ。お兄ちゃんはね、数学をするとき、具体例を作って考え、数式を使って確かめるのが好きだ。 学校の勉強のときもそうだし、自分で好きな数学の本を読むときもそうだよ」

ユーリ 「具体例を作って考え、数式を使って確かめる……」

「そう。だから、なんていうのかな — —数学で数式を使うのは《いつもやってること》なんだよ。だからユーリがフィボナッチ数列について見つけた発見も、 《数式を使って確かめよう》とすぐ思った。それは、いつもやってること、あたりまえのことなんだ」

ユーリ 「ふーん……」

「水を飲むのに蛇口をひねるとか、ご飯を食べるのにお箸を持つとか、数学で数式を使うっていうのはそのくらい自然なことかもしれないよ。 もちろん場合によっては手で水をすくって飲むことも、おにぎりを手で食べるということもあるけれどね」

ユーリ 「へー……」

いつも大きく?

「それにしても、フィボナッチ数列の階差数列を取ると一つずらした自分になるっていう《ユーリの発見》は、とてもおもしろい発見だと思うよ」

ユーリ 「だよね。ところでさ、お兄ちゃん」

「なに?」

ユーリ 「等差数列とか、等比数列とか、フィボナッチ数列とかいろいろ教えてくれたけど、いつも大きくなるばっかりじゃん? 他の数列を考えてもいーよね」

「等差数列がいつも大きくなるとは限らないよ。この数列は等差数列だけど、だんだん小さくなってる」

$$ 100, 99, 98, 97, 96, 95, \ldots $$

ユーリ 「あ、そっか。この数列は $0$ で終わるの?」

「いやいや、そこから先はマイナスに突入する」

$$ 100, 99, 98, 97, 96, 95, \ldots, 2, 1, 0, -1, -2, -3, \ldots $$

ユーリ 「あー、そりゃそっか」

「小さくなる等差数列は 公差 ( こうさ ) がマイナスだってことだね。それは階差数列を調べてみれば一目瞭然だ」

ユーリ 「ふむふむ」

「等比数列でも小さくできる。公比を $1$ より小さな正の数にすればいい。たとえば $\frac$ とかね」

ユーリ フィボナッチ数列 (読み)ふぃぼなっちすうれつ 「あ、そっか。それで小さくなるか。公比がマイナスでも小さくなっていくよね」

「いやいやだめだよ。公比がマイナスなら、小さくなったり大きくなったりする」

ユーリ 「なんで……あそっか!』

「公比がマイナスだと、かけるたびに正の数と負の数が交互に反転するからね」

ユーリ 「そーか、そーだね……ねーお兄ちゃん。もっと変な風に大きくなったり小さくなったりする数列作ってよ!」

関連記事

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次
閉じる